Compare commits
	
		
			2 Commits
		
	
	
		
			cf648cd555
			...
			419994ee32
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 419994ee32 | |||
| e27087a86b | 
							
								
								
									
										18
									
								
								ircbot/migrations/0019_ircchannel_discord_bridge.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								ircbot/migrations/0019_ircchannel_discord_bridge.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,18 @@ | |||||||
|  | # Generated by Django 3.2.18 on 2023-02-16 22:38 | ||||||
|  | 
 | ||||||
|  | from django.db import migrations, models | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class Migration(migrations.Migration): | ||||||
|  | 
 | ||||||
|  |     dependencies = [ | ||||||
|  |         ('ircbot', '0018_ircserver_replace_irc_control_with_markdown'), | ||||||
|  |     ] | ||||||
|  | 
 | ||||||
|  |     operations = [ | ||||||
|  |         migrations.AddField( | ||||||
|  |             model_name='ircchannel', | ||||||
|  |             name='discord_bridge', | ||||||
|  |             field=models.CharField(blank=True, default='', max_length=32), | ||||||
|  |         ), | ||||||
|  |     ] | ||||||
| @ -104,6 +104,8 @@ class IrcChannel(models.Model): | |||||||
| 
 | 
 | ||||||
|     markov_learn_from_channel = models.BooleanField(default=True) |     markov_learn_from_channel = models.BooleanField(default=True) | ||||||
| 
 | 
 | ||||||
|  |     discord_bridge = models.CharField(default='', max_length=32, blank=True) | ||||||
|  | 
 | ||||||
|     class Meta: |     class Meta: | ||||||
|         """Settings for the model.""" |         """Settings for the model.""" | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -1,17 +1,16 @@ | |||||||
|  | """Provide methods for manipulating markov chain processing.""" | ||||||
| import logging | import logging | ||||||
| import random | from random import SystemRandom as sysrand | ||||||
| 
 | 
 | ||||||
| from django.db.models import Sum | from django.db.models import Sum | ||||||
| 
 | 
 | ||||||
| from markov.models import MarkovContext, MarkovState, MarkovTarget | from markov.models import MarkovContext, MarkovState, MarkovTarget | ||||||
| 
 | 
 | ||||||
| 
 | log = logging.getLogger(__name__) | ||||||
| log = logging.getLogger('markov.lib') |  | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bias=2, max_tries=5): | def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bias=2, max_tries=5): | ||||||
|     """String multiple sentences together into a coherent sentence.""" |     """Combine multiple sentences together into a coherent sentence.""" | ||||||
| 
 |  | ||||||
|     tries = 0 |     tries = 0 | ||||||
|     line = [] |     line = [] | ||||||
|     min_words_per_sentence = min_words / sentence_bias |     min_words_per_sentence = min_words / sentence_bias | ||||||
| @ -23,7 +22,7 @@ def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bia | |||||||
|         else: |         else: | ||||||
|             if len(line) > 0: |             if len(line) > 0: | ||||||
|                 if line[-1][-1] not in [',', '.', '!', '?', ':']: |                 if line[-1][-1] not in [',', '.', '!', '?', ':']: | ||||||
|                     line[-1] += random.choice(['?', '.', '!']) |                     line[-1] += sysrand.choice(['?', '.', '!']) | ||||||
| 
 | 
 | ||||||
|         tries += 1 |         tries += 1 | ||||||
| 
 | 
 | ||||||
| @ -33,7 +32,6 @@ def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bia | |||||||
| 
 | 
 | ||||||
| def generate_longish_sentence(context, topics=None, min_words=15, max_words=30, max_tries=100): | def generate_longish_sentence(context, topics=None, min_words=15, max_words=30, max_tries=100): | ||||||
|     """Generate a Markov chain, but throw away the short ones unless we get desperate.""" |     """Generate a Markov chain, but throw away the short ones unless we get desperate.""" | ||||||
| 
 |  | ||||||
|     sent = "" |     sent = "" | ||||||
|     tries = 0 |     tries = 0 | ||||||
|     while tries < max_tries: |     while tries < max_tries: | ||||||
| @ -52,20 +50,19 @@ def generate_longish_sentence(context, topics=None, min_words=15, max_words=30, | |||||||
| 
 | 
 | ||||||
| def generate_sentence(context, topics=None, min_words=15, max_words=30): | def generate_sentence(context, topics=None, min_words=15, max_words=30): | ||||||
|     """Generate a Markov chain.""" |     """Generate a Markov chain.""" | ||||||
| 
 |  | ||||||
|     words = [] |     words = [] | ||||||
|     # if we have topics, try to work from it and work backwards |     # if we have topics, try to work from it and work backwards | ||||||
|     if topics: |     if topics: | ||||||
|         topic_word = random.choice(topics) |         topic_word = sysrand.choice(topics) | ||||||
|         topics.remove(topic_word) |         topics.remove(topic_word) | ||||||
|         log.debug("looking for topic '{0:s}'".format(topic_word)) |         log.debug("looking for topic '%s'", topic_word) | ||||||
|         new_states = MarkovState.objects.filter(context=context, v=topic_word) |         new_states = MarkovState.objects.filter(context=context, v=topic_word) | ||||||
| 
 | 
 | ||||||
|         if len(new_states) > 0: |         if len(new_states) > 0: | ||||||
|             log.debug("found '{0:s}', starting backwards".format(topic_word)) |             log.debug("found '%s', starting backwards", topic_word) | ||||||
|             words.insert(0, topic_word) |             words.insert(0, topic_word) | ||||||
|             while len(words) <= max_words and words[0] != MarkovState._start2: |             while len(words) <= max_words and words[0] != MarkovState._start2: | ||||||
|                 log.debug("looking backwards for '{0:s}'".format(words[0])) |                 log.debug("looking backwards for '%s'", words[0]) | ||||||
|                 new_states = MarkovState.objects.filter(context=context, v=words[0]) |                 new_states = MarkovState.objects.filter(context=context, v=words[0]) | ||||||
|                 # if we find a start, use it |                 # if we find a start, use it | ||||||
|                 if MarkovState._start2 in new_states: |                 if MarkovState._start2 in new_states: | ||||||
| @ -87,7 +84,7 @@ def generate_sentence(context, topics=None, min_words=15, max_words=30): | |||||||
| 
 | 
 | ||||||
|     i = len(words) |     i = len(words) | ||||||
|     while words[-1] != MarkovState._stop: |     while words[-1] != MarkovState._stop: | ||||||
|         log.debug("looking for '{0:s}','{1:s}'".format(words[i-2], words[i-1])) |         log.debug("looking for '%s','%s'", words[i-2], words[i-1]) | ||||||
|         new_states = MarkovState.objects.filter(context=context, k1=words[i-2], k2=words[i-1]) |         new_states = MarkovState.objects.filter(context=context, k1=words[i-2], k2=words[i-1]) | ||||||
|         log.debug("states retrieved") |         log.debug("states retrieved") | ||||||
| 
 | 
 | ||||||
| @ -103,7 +100,7 @@ def generate_sentence(context, topics=None, min_words=15, max_words=30): | |||||||
|             words.append(MarkovState._stop) |             words.append(MarkovState._stop) | ||||||
|         elif len(target_hits) > 0: |         elif len(target_hits) > 0: | ||||||
|             # if there's a target word in the states, pick it |             # if there's a target word in the states, pick it | ||||||
|             target_hit = random.choice(target_hits) |             target_hit = sysrand.choice(target_hits) | ||||||
|             log.debug("found a topic hit %s, using it", target_hit) |             log.debug("found a topic hit %s, using it", target_hit) | ||||||
|             topics.remove(target_hit) |             topics.remove(target_hit) | ||||||
|             words.append(target_hit) |             words.append(target_hit) | ||||||
| @ -129,7 +126,6 @@ def generate_sentence(context, topics=None, min_words=15, max_words=30): | |||||||
| 
 | 
 | ||||||
| def get_or_create_target_context(target_name): | def get_or_create_target_context(target_name): | ||||||
|     """Return the context for a provided nick/channel, creating missing ones.""" |     """Return the context for a provided nick/channel, creating missing ones.""" | ||||||
| 
 |  | ||||||
|     target_name = target_name.lower() |     target_name = target_name.lower() | ||||||
| 
 | 
 | ||||||
|     # find the stuff, or create it |     # find the stuff, or create it | ||||||
| @ -156,7 +152,6 @@ def get_or_create_target_context(target_name): | |||||||
| 
 | 
 | ||||||
| def get_word_out_of_states(states, backwards=False): | def get_word_out_of_states(states, backwards=False): | ||||||
|     """Pick one random word out of the given states.""" |     """Pick one random word out of the given states.""" | ||||||
| 
 |  | ||||||
|     # work around possible broken data, where a k1,k2 should have a value but doesn't |     # work around possible broken data, where a k1,k2 should have a value but doesn't | ||||||
|     if len(states) == 0: |     if len(states) == 0: | ||||||
|         states = MarkovState.objects.filter(v=MarkovState._stop) |         states = MarkovState.objects.filter(v=MarkovState._stop) | ||||||
| @ -168,9 +163,9 @@ def get_word_out_of_states(states, backwards=False): | |||||||
|         # this being None probably means there's no data for this context |         # this being None probably means there's no data for this context | ||||||
|         raise ValueError("no markov states to generate from") |         raise ValueError("no markov states to generate from") | ||||||
| 
 | 
 | ||||||
|     hit = random.randint(0, count_sum) |     hit = sysrand.randint(0, count_sum) | ||||||
| 
 | 
 | ||||||
|     log.debug("sum: {0:d} hit: {1:d}".format(count_sum, hit)) |     log.debug("sum: %s hit: %s", count_sum, hit) | ||||||
| 
 | 
 | ||||||
|     states_itr = states.iterator() |     states_itr = states.iterator() | ||||||
|     for state in states_itr: |     for state in states_itr: | ||||||
| @ -183,13 +178,12 @@ def get_word_out_of_states(states, backwards=False): | |||||||
| 
 | 
 | ||||||
|             break |             break | ||||||
| 
 | 
 | ||||||
|     log.debug("found '{0:s}'".format(new_word)) |     log.debug("found '%s'", new_word) | ||||||
|     return new_word |     return new_word | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def learn_line(line, context): | def learn_line(line, context): | ||||||
|     """Create a bunch of MarkovStates for a given line of text.""" |     """Create a bunch of MarkovStates for a given line of text.""" | ||||||
| 
 |  | ||||||
|     log.debug("learning %s...", line[:40]) |     log.debug("learning %s...", line[:40]) | ||||||
| 
 | 
 | ||||||
|     words = line.split() |     words = line.split() | ||||||
| @ -200,7 +194,7 @@ def learn_line(line, context): | |||||||
|             return |             return | ||||||
| 
 | 
 | ||||||
|     for i, word in enumerate(words): |     for i, word in enumerate(words): | ||||||
|         log.debug("'{0:s}','{1:s}' -> '{2:s}'".format(words[i], words[i+1], words[i+2])) |         log.debug("'%s','%s' -> '%s'", words[i], words[i+1], words[i+2]) | ||||||
|         state, created = MarkovState.objects.get_or_create(context=context, |         state, created = MarkovState.objects.get_or_create(context=context, | ||||||
|                                                            k1=words[i], |                                                            k1=words[i], | ||||||
|                                                            k2=words[i+1], |                                                            k2=words[i+1], | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user