Markov: consolidate _reply_to_line and _reply into _generate_line
This commit is contained in:
parent
aa6ea083fd
commit
42d414a0a4
|
@ -182,10 +182,10 @@ class Markov(Module):
|
||||||
addressed_re = re.compile(addressed_pattern)
|
addressed_re = re.compile(addressed_pattern)
|
||||||
if addressed_re.match(what):
|
if addressed_re.match(what):
|
||||||
# i was addressed directly, so respond, addressing the speaker
|
# i was addressed directly, so respond, addressing the speaker
|
||||||
return self.reply(connection, event, '{0:s}: {1:s}'.format(nick, self._reply_to_line(addressed_re.match(what).group(1))))
|
return self.reply(connection, event, '{0:s}: {1:s}'.format(nick, self._generate_line(line=addressed_re.match(what).group(1))))
|
||||||
else:
|
else:
|
||||||
# i wasn't addressed directly, so just respond
|
# i wasn't addressed directly, so just respond
|
||||||
return self.reply(connection, event, '{0:s}'.format(self._reply_to_line(what)))
|
return self.reply(connection, event, '{0:s}'.format(self._generate_line(line=what)))
|
||||||
|
|
||||||
def markov_train(self, connection, event, nick, userhost, what, admin_unlocked):
|
def markov_train(self, connection, event, nick, userhost, what, admin_unlocked):
|
||||||
"""Learn lines from a file. Good for initializing a brain."""
|
"""Learn lines from a file. Good for initializing a brain."""
|
||||||
|
@ -229,9 +229,9 @@ class Markov(Module):
|
||||||
|
|
||||||
if match.group(5) != '':
|
if match.group(5) != '':
|
||||||
line = match.group(6)
|
line = match.group(6)
|
||||||
return self._reply_to_line(line, min_size=min_size, max_size=max_size)
|
return self._generate_line(line=line, min_size=min_size, max_size=max_size)
|
||||||
else:
|
else:
|
||||||
return self._reply(min_size=min_size, max_size=max_size)
|
return self._generate_line(min_size=min_size, max_size=max_size)
|
||||||
|
|
||||||
def _learn_line(self, line, target=None):
|
def _learn_line(self, line, target=None):
|
||||||
"""Create Markov chains from the provided line."""
|
"""Create Markov chains from the provided line."""
|
||||||
|
@ -273,54 +273,7 @@ class Markov(Module):
|
||||||
print("sqlite error: " + str(e))
|
print("sqlite error: " + str(e))
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def _reply(self, min_size=15, max_size=100):
|
def _generate_line(self, line='', min_size=15, max_size=100):
|
||||||
"""Generate a totally random string from the chains, of specified limit of words."""
|
|
||||||
|
|
||||||
# if the limit is too low, there's nothing to do
|
|
||||||
if (max_size <= 3):
|
|
||||||
raise Exception("max_size is too small: %d" % max_size)
|
|
||||||
|
|
||||||
# if the min is too large, abort
|
|
||||||
if (min_size > 20):
|
|
||||||
raise Exception("min_size is too large: %d" % min_size)
|
|
||||||
|
|
||||||
# start with an empty chain, and work from there
|
|
||||||
gen_words = [self.start1, self.start2]
|
|
||||||
|
|
||||||
# set up the number of times we've tried to hit the specified minimum
|
|
||||||
min_search_tries = 0
|
|
||||||
|
|
||||||
# walk a chain, randomly, building the list of words
|
|
||||||
while len(gen_words) < max_size + 2 and gen_words[-1] != self.stop:
|
|
||||||
key_hits = self._retrieve_chains_for_key(gen_words[-2], gen_words[-1])
|
|
||||||
if len(gen_words) < min_size and len(filter(lambda a: a != self.stop, key_hits)) > 0:
|
|
||||||
# we aren't at min size yet and we have at least one chain path
|
|
||||||
# that isn't (yet) the end. take one of those.
|
|
||||||
gen_words.append(random.choice(filter(lambda a: a != self.stop, key_hits)))
|
|
||||||
min_search_tries = 0
|
|
||||||
elif len(gen_words) < min_size and min_search_tries <= 10:
|
|
||||||
# we aren't at min size yet and the only path we currently have is
|
|
||||||
# a end, but we haven't retried much yet, so chop off our current
|
|
||||||
# chain and try again.
|
|
||||||
gen_words = gen_words[0:len(gen_words)-2]
|
|
||||||
min_search_tries = min_search_tries + 1
|
|
||||||
else:
|
|
||||||
# either we have hit our min size requirement, or we haven't but
|
|
||||||
# we also exhausted min_search_tries. either way, just pick a word
|
|
||||||
# at random, knowing it may be the end of the chain
|
|
||||||
gen_words.append(random.choice(key_hits))
|
|
||||||
min_search_tries = 0
|
|
||||||
|
|
||||||
# chop off the seed data at the start
|
|
||||||
gen_words = gen_words[2:]
|
|
||||||
|
|
||||||
# chop off the end text, if it was the keyword indicating an end of chain
|
|
||||||
if gen_words[-1] == self.stop:
|
|
||||||
gen_words = gen_words[:-1]
|
|
||||||
|
|
||||||
return ' '.join(gen_words).encode('utf-8', 'ignore')
|
|
||||||
|
|
||||||
def _reply_to_line(self, line, min_size=15, max_size=100):
|
|
||||||
"""Reply to a line, using some text in the line as a point in the chain."""
|
"""Reply to a line, using some text in the line as a point in the chain."""
|
||||||
|
|
||||||
# if the limit is too low, there's nothing to do
|
# if the limit is too low, there's nothing to do
|
||||||
|
@ -331,9 +284,13 @@ class Markov(Module):
|
||||||
if (min_size > 20):
|
if (min_size > 20):
|
||||||
raise Exception("min_size is too large: %d" % min_size)
|
raise Exception("min_size is too large: %d" % min_size)
|
||||||
|
|
||||||
|
words = []
|
||||||
|
target_word = ''
|
||||||
# get a random word from the input
|
# get a random word from the input
|
||||||
words = line.split()
|
if line != '':
|
||||||
target_word = words[random.randint(0, len(words)-1)]
|
words = line.split()
|
||||||
|
target_word = words[random.randint(0, len(words)-1)]
|
||||||
|
print('target word ' + target_word)
|
||||||
|
|
||||||
# start with an empty chain, and work from there
|
# start with an empty chain, and work from there
|
||||||
gen_words = [self.start1, self.start2]
|
gen_words = [self.start1, self.start2]
|
||||||
|
@ -341,8 +298,9 @@ class Markov(Module):
|
||||||
# walk a chain, randomly, building the list of words
|
# walk a chain, randomly, building the list of words
|
||||||
while len(gen_words) < max_size + 2 and gen_words[-1] != self.stop:
|
while len(gen_words) < max_size + 2 and gen_words[-1] != self.stop:
|
||||||
key_hits = self._retrieve_chains_for_key(gen_words[-2], gen_words[-1])
|
key_hits = self._retrieve_chains_for_key(gen_words[-2], gen_words[-1])
|
||||||
|
print(key_hits)
|
||||||
# use the chain that includes the target word, if it is found
|
# use the chain that includes the target word, if it is found
|
||||||
if target_word in key_hits:
|
if target_word != '' and target_word in key_hits:
|
||||||
gen_words.append(target_word)
|
gen_words.append(target_word)
|
||||||
# generate new word
|
# generate new word
|
||||||
target_word = words[random.randint(0, len(words)-1)]
|
target_word = words[random.randint(0, len(words)-1)]
|
||||||
|
|
Loading…
Reference in New Issue