dr.botzo/markov/lib.py

181 lines
6.7 KiB
Python
Raw Normal View History

"""Provide methods for manipulating markov chain processing."""
import logging
import random
from django.db.models import Sum
from markov.models import MarkovState
log = logging.getLogger(__name__)
def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bias=2, max_tries=5):
"""Combine multiple sentences together into a coherent sentence."""
tries = 0
line = []
min_words_per_sentence = min_words / sentence_bias
while tries < max_tries:
line += generate_longish_sentence(context, topics=topics, min_words=min_words_per_sentence,
max_words=max_words, max_tries=max_tries)
if len(line) >= min_words:
return line
else:
if len(line) > 0:
if line[-1][-1] not in [',', '.', '!', '?', ':']:
line[-1] += random.SystemRandom().choice(['?', '.', '!'])
tries += 1
# if we got here, we need to give up
return line
def generate_longish_sentence(context, topics=None, min_words=15, max_words=30, max_tries=100):
"""Generate a Markov chain, but throw away the short ones unless we get desperate."""
sent = ""
tries = 0
while tries < max_tries:
sent = generate_sentence(context, topics=topics, min_words=min_words, max_words=max_words)
if len(sent) >= min_words:
log.debug("found a longish sentence, %s", sent)
return sent
else:
log.debug("%s isn't long enough, going to try again", sent)
tries += 1
# if we got here, we need to just give up
return sent
def generate_sentence(context, topics=None, min_words=15, max_words=30):
"""Generate a Markov chain."""
words = []
# if we have topics, try to work from it and work backwards
if topics:
topic_word = random.SystemRandom().choice(topics)
topics.remove(topic_word)
log.debug("looking for topic '%s'", topic_word)
new_states = MarkovState.objects.filter(context=context, v=topic_word)
if len(new_states) > 0:
log.debug("found '%s', starting backwards", topic_word)
words.insert(0, topic_word)
while len(words) <= max_words and words[0] != MarkovState._start2:
log.debug("looking backwards for '%s'", words[0])
new_states = MarkovState.objects.filter(context=context, v=words[0])
# if we find a start, use it
if MarkovState._start2 in new_states:
log.debug("found a start2 in the results, intentionally picking it")
words.insert(0, MarkovState._start2)
else:
words.insert(0, get_word_out_of_states(new_states, backwards=True))
log.debug("picked %s", words[0])
# if what we found is too long, abandon it, sadly
if len(words) > max_words:
log.debug("%s is too long, i'm going to give up on it", words)
words.clear()
# if we didn't get topic stuff, we need to start (forwards) here, otherwise we use
# what we already put together (obviously)
if len(words) == 0:
words = [MarkovState._start1, MarkovState._start2]
i = len(words)
while words[-1] != MarkovState._stop:
log.debug("looking for '%s','%s'", words[i-2], words[i-1])
new_states = MarkovState.objects.filter(context=context, k1=words[i-2], k2=words[i-1])
2016-01-16 17:58:11 -06:00
log.debug("states retrieved")
# try to find states that are in our targets
if topics and len(topics):
target_hits = list(set(words).intersection(set(topics)))
else:
target_hits = []
if len(words) > min_words and MarkovState._stop in new_states:
# if we're over min_words, and got a stop naturally, use it
log.debug("found a stop in the results, intentionally picking it")
words.append(MarkovState._stop)
elif len(target_hits) > 0:
# if there's a target word in the states, pick it
target_hit = random.SystemRandom().choice(target_hits)
log.debug("found a topic hit %s, using it", target_hit)
topics.remove(target_hit)
words.append(target_hit)
elif len(words) <= min_words:
# if we still need more words, intentionally avoid stop
words.append(get_word_out_of_states(new_states.exclude(v=MarkovState._stop)))
log.debug("picked (stop avoidance) %s", words[-1])
else:
words.append(get_word_out_of_states(new_states))
log.debug("picked %s", words[-1])
i += 1
words = [word for word in words if word not in
(MarkovState._start1, MarkovState._start2, MarkovState._stop)]
# if what we found is too long, abandon it, sadly
if len(words) > max_words:
log.debug("%s is too long, i'm going to give up on it", words)
words.clear()
return words
def get_word_out_of_states(states, backwards=False):
"""Pick one random word out of the given states."""
# work around possible broken data, where a k1,k2 should have a value but doesn't
if len(states) == 0:
states = MarkovState.objects.filter(v=MarkovState._stop)
new_word = ''
running = 0
count_sum = states.aggregate(Sum('count'))['count__sum']
if not count_sum:
# this being None probably means there's no data for this context
raise ValueError("no markov states to generate from")
hit = random.SystemRandom().randint(0, count_sum)
log.debug("sum: %s hit: %s", count_sum, hit)
states_itr = states.iterator()
for state in states_itr:
running += state.count
if running >= hit:
if backwards:
new_word = state.k2
else:
new_word = state.v
break
log.debug("found '%s'", new_word)
return new_word
def learn_line(line, context):
"""Create a bunch of MarkovStates for a given line of text."""
2016-01-16 17:58:11 -06:00
log.debug("learning %s...", line[:40])
words = line.split()
words = [MarkovState._start1, MarkovState._start2] + words + [MarkovState._stop]
for word in words:
if len(word) > MarkovState._meta.get_field('k1').max_length:
return
for i, word in enumerate(words):
log.debug("'%s','%s' -> '%s'", words[i], words[i+1], words[i+2])
state, created = MarkovState.objects.get_or_create(context=context,
k1=words[i],
k2=words[i+1],
v=words[i+2])
state.count += 1
state.save()
if i > len(words) - 4:
break