import logging import random from django.db.models import Sum from markov.models import MarkovContext, MarkovState, MarkovTarget log = logging.getLogger('markov.lib') def generate_line(context, topics=None, min_words=15, max_words=30, sentence_bias=2, max_tries=5): """String multiple sentences together into a coherent sentence.""" tries = 0 line = [] min_words_per_sentence = min_words / sentence_bias while tries < max_tries: line += generate_longish_sentence(context, topics=topics, min_words=min_words_per_sentence, max_words=max_words, max_tries=max_tries) if len(line) >= min_words: return line else: if len(line) > 0: if line[-1][-1] not in [',', '.', '!', '?', ':']: line[-1] += random.choice(['?', '.', '!']) tries += 1 # if we got here, we need to give up return line def generate_longish_sentence(context, topics=None, min_words=15, max_words=30, max_tries=100): """Generate a Markov chain, but throw away the short ones unless we get desperate.""" sent = "" tries = 0 while tries < max_tries: sent = generate_sentence(context, topics=topics, min_words=min_words, max_words=max_words) if len(sent) >= min_words: log.debug("found a longish sentence, %s", sent) return sent else: log.debug("%s isn't long enough, going to try again", sent) tries += 1 # if we got here, we need to just give up return sent def generate_sentence(context, topics=None, min_words=15, max_words=30): """Generate a Markov chain.""" words = [] # if we have topics, try to work from it and work backwards if topics: topic_word = random.choice(topics) topics.remove(topic_word) log.debug("looking for topic '{0:s}'".format(topic_word)) new_states = MarkovState.objects.filter(context=context, v=topic_word) if len(new_states) > 0: log.debug("found '{0:s}', starting backwards".format(topic_word)) words.insert(0, topic_word) while len(words) <= max_words and words[0] != MarkovState._start2: log.debug("looking backwards for '{0:s}'".format(words[0])) new_states = MarkovState.objects.filter(context=context, v=words[0]) # if we find a start, use it if MarkovState._start2 in new_states: log.debug("found a start2 in the results, intentionally picking it") words.insert(0, MarkovState._start2) else: words.insert(0, get_word_out_of_states(new_states, backwards=True)) log.debug("picked %s", words[0]) # if what we found is too long, abandon it, sadly if len(words) > max_words: log.debug("%s is too long, i'm going to give up on it", words) words.clear() # if we didn't get topic stuff, we need to start (forwards) here, otherwise we use # what we already put together (obviously) if len(words) == 0: words = [MarkovState._start1, MarkovState._start2] i = len(words) while words[-1] != MarkovState._stop: log.debug("looking for '{0:s}','{1:s}'".format(words[i-2], words[i-1])) new_states = MarkovState.objects.filter(context=context, k1=words[i-2], k2=words[i-1]) log.debug("states retrieved") # try to find states that are in our targets if topics and len(topics): target_hits = list(set(words).intersection(set(topics))) else: target_hits = [] if len(words) > min_words and MarkovState._stop in new_states: # if we're over min_words, and got a stop naturally, use it log.debug("found a stop in the results, intentionally picking it") words.append(MarkovState._stop) elif len(target_hits) > 0: # if there's a target word in the states, pick it target_hit = random.choice(target_hits) log.debug("found a topic hit %s, using it", target_hit) topics.remove(target_hit) words.append(target_hit) elif len(words) <= min_words: # if we still need more words, intentionally avoid stop words.append(get_word_out_of_states(new_states.exclude(v=MarkovState._stop))) log.debug("picked (stop avoidance) %s", words[-1]) else: words.append(get_word_out_of_states(new_states)) log.debug("picked %s", words[-1]) i += 1 words = [word for word in words if word not in (MarkovState._start1, MarkovState._start2, MarkovState._stop)] # if what we found is too long, abandon it, sadly if len(words) > max_words: log.debug("%s is too long, i'm going to give up on it", words) words.clear() return words def get_or_create_target_context(target_name): """Return the context for a provided nick/channel, creating missing ones.""" target_name = target_name.lower() # find the stuff, or create it try: target = MarkovTarget.objects.get(name=target_name) except MarkovTarget.DoesNotExist: # we need to create a context and a target, and we have to make the context first # make a context --- lacking a good idea, just create one with this target name until configured otherwise context, c = MarkovContext.objects.get_or_create(name=target_name) target, c = MarkovTarget.objects.get_or_create(name=target_name, context=context) return target.context try: return target.context except MarkovContext.DoesNotExist: # make a context --- lacking a good idea, just create one with this target name until configured otherwise context, c = MarkovContext.objects.get_or_create(name=target_name) target.context = context target.save() return target.context def get_word_out_of_states(states, backwards=False): """Pick one random word out of the given states.""" # work around possible broken data, where a k1,k2 should have a value but doesn't if len(states) == 0: states = MarkovState.objects.filter(v=MarkovState._stop) new_word = '' running = 0 count_sum = states.aggregate(Sum('count'))['count__sum'] hit = random.randint(0, count_sum) log.debug("sum: {0:d} hit: {1:d}".format(count_sum, hit)) states_itr = states.iterator() for state in states_itr: running += state.count if running >= hit: if backwards: new_word = state.k2 else: new_word = state.v break log.debug("found '{0:s}'".format(new_word)) return new_word def learn_line(line, context): """Create a bunch of MarkovStates for a given line of text.""" log.debug("learning %s...", line[:40]) words = line.split() words = [MarkovState._start1, MarkovState._start2] + words + [MarkovState._stop] for word in words: if len(word) > MarkovState._meta.get_field('k1').max_length: return for i, word in enumerate(words): log.debug("'{0:s}','{1:s}' -> '{2:s}'".format(words[i], words[i+1], words[i+2])) state, created = MarkovState.objects.get_or_create(context=context, k1=words[i], k2=words[i+1], v=words[i+2]) state.count += 1 state.save() if i > len(words) - 4: break